
1

in the European Connected Factory
Platform for Agile Manufacturing

Applying MQTT Sparkplug

Whitepaper

2

Authors

Nisrine Bnouhanna

fortiss GmbH

Munich, Germany

bnouhanna@fortiss.org

Rute C. Sofia

fortiss GmbH

Munich, Germany

sofia@fortiss.org

Edoardo Pristeri

LINKS foundation

Turin, Italy

pristeri@links.foundation.com

Abstract – This white paper provides an overview on the need and application of MQTT Sparkplug within

the context of the European Connected Factory Platform for Agile Manufacturing. The white paper is

directed towards researchers, developers, system integrators interested in understanding the role of

MQTT Sparkplug and its operational use in manufacturing environments.

Keywords – Industrial Internet of Things; Networking Architectures; Network Protocols; Operational

Technology - Information Technology; Semantic Interoperability; EFPF

3

Contents

I. Introduction 4

II. Related Work 5

III. The European Connected Factory Platform for Agile Manufacturing (EFPF) 6

IV. MQTT Sparkplug in a NutShell 8

 A. MQTT Sparkplug 8

 1) Sparkplug™ MQTT Topic Namespace 9

 2) Sparkplug B MQTT Payload 9

 3) State Management 9

V. MQTT Sparkplug in EFPF 10

VI. EFPF MQTT Sparkplug Examples 12

 A. Data Analytics Tooling Interconnection 12

 B. Environment Monitoring Pilot 14

VII. Summary and Lessons Learned 16

VIII. Acknowledgements 16

IX. References 17

4

Introduction

Production environments are currently supported
by multiple heterogeneous Industrial Internet of
Things (IIoT) platforms. These platforms comprise
different technologies (e.g., semantic technolo-
gies) to assist different communication protocols
interoperably to allow data exchange from Edge
to Cloud Machine Learning to support automation
aspects.

Data exchange is supported by different communi-
cation protocols, and the most popular protocols
in manufacturing environments include the OPC
Unified Architecture (OPC UA) [1] and the Message
Queuing Telemetry Transport (MQTT) protocol [2].

Both protocols exhibit advantages and disadvantag-
es considering design and performance [3, 4]. Over-
all, OPC UA has been developed to support in-plant
communication, while MQTT has been originally
established to interconnect oil pipes over unreliable
satellite networks. This motivation produced a light-
weight, bandwidth-efficient protocol that can inte-
grate some levels of Quality of Service (QoS).

MQTT is intentionally adapted to support an end-
to-end IoT interconnection, where the goal is to
interconnect machines between a shop floor and
the Cloud. Meanwhile, OPC UA has been devised
to support communication within the shop floor
based on a client–server approach. A key drawback
of OPC UA is that it will not intentionally allow the
isolation of a shop floor network when intercon-
necting to an IIoT system: an OPC UA client must
open a firewall port to access data from a machine
on the shop floor (OPC UA server), thus possibly
exposing critical environments to attacks.

Therefore, the usual approach followed in industrial
environments is to consider an OPC UA to another
protocol translation via a software-based gateway
(e.g., OPC UA to MQTT).

By contrast, several (claimed) MQTT disadvantag-
es in comparison to OPC UA include insufficient
encoding, limited integrated security, and lack of
uniform information models, which can be solved
by implementing MQTT together with Sparkplug
(MQTT Sparkplug).

With the current technological evolution of IIoT
systems, where intelligence is being driven to the

Edge [5], assessing the best protocols for different
environments is important.

Regarding an end-to-end (from Edge to Cloud) pro-
duction environment, MQTT Sparkplug emerges as
an interesting solution because it combines the key
advantages of both protocols. As an IP-based, mes-
sage-oriented lightweight protocol, MQTT provides
interoperability based on the broker abstraction
concept to allow for the support of mission-criti-
cal, real-time applications. Sparkplug, particularly
Sparkplug B specification, introduces support for
Operational Technology (OT) data modeling, which
is essential to a flexible and interoperable shop floor
interconnection.

Moreover, Sparkplug is a new specification provided
by Eclipse1, which defines a standard MQTT topic
namespace, that is, payload and session manage-
ment for IIoT applications, while demonstrating re-
al-time interconnection to Supervisory Control and
Data Acquisition (SCADA) implementations.

This white paper debates and explores the use of
MQTT Sparkplug on a heterogeneous, large-scale
factory platform, namely the European Connected
Factory Platform for Agile Manufacturing (EFPF) .
The white paper is directed to researchers, devel-
opers, engineers, and system integrators aiming at
understanding the role of MQTT Sparkplug in the
context of industrial applications.

The white paper is organized as follows. Section
II provides the reader with relevant pointers to un-
derstand effectively communication protocols in
IIoT, particularly MQTT Sparkplug. Section III intro-
duces the EFPF platform and its main components.
Section IV provides a brief introduction to MQTT
Sparkplug, while Section V explains the EFPF MQTT
Sparkplug namespace proposal. Section VI presents
the use of MQTT Sparkplug on two different pilots:
i) support a broad interconnection between the
shop floor and different data analytics tools and
ii) facilitate the interconnection of different shop
floors and EFPF for environmental monitoring with
the EFPF TSMatch component. The white paper
concludes in Section VII, presenting challenges and
advantages of the integration of MQTT Sparkplug in
EFPF.

5

Related Work

Different IIoT applications introduce specific com-
munication requirements and should dictate the
choice of a specific IoT protocol. For instance, the
reader can refer to Ramson et al. to obtain an over-
view of different IIoT applications [6]. Sofia et al.
provide a systemic description of communication
key performance indicators for IIoT applications [7].

Another category of related work focuses on the
performance analysis of IIoT protocols. Silva et al.
provide a comparative analysis of the most popular
IIoT protocols considering networking features and
present a testbed-based comparison of MQTT and
OPC UA in terms of latency [4]. Naik et al. provide
a broad comparison among the four established
messaging protocols for IoT systems, namely
MQTT, CoAP, AMQP, and HTTP, and perform a rel-
ative analysis based on some interrelated criteria
to gain insight into the strengths and limitations of
these protocols [8].

Nitulescu et al. present the concept and implemen-
tation of a Web-based SCADA based on Node-RED3

[9]. The project implements an IoT system that
allows the components to transfer information via
Modbus/TCP and MQTT and develops the basic
SCADA features for process supervision. They also
mention Sparkplug B and its availability in Node-
RED4. However, they do not explain the application
of Sparkplug and its implementation.

Nipper et al. address the problem of brownfield de-
vices integration into IT, i.e., the challenges with the
integration of OT to Information Technology, and IT
with MQTT Sparkplug, providing examples for data
modeling based on MQTT Sparkplug [10].

The reader is further directed to the Eclipse Spark-
plug working group5.

Overall, MQTT Sparkplug is relevant to address the
end-to-end support of IIoT flexibly. Understanding
the application of MQTT Sparkplug, and determin-
ing which performance it can support is necessary.

This white paper contributes to this gap by explain-
ing the integration of MQTT Sparkplug in IIoT use
cases of the EFPF platform.

1 https://sparkplug.eclipse.org/}

2 https://www.efpf.org

3 https://nodered.org/

4 https://flows.nodered.org/node/node-red-contrib-sparkplug

5 https://www.eclipse.org/org/workinggroups/eclipse_sparkplug_charter.php

6

EFPF

Figure 1: the EFPF architecture and its components.

EFPF is a federated smart factory ecosystem and a
digital platform that interlinks different stakeholders
of the digital manufacturing domain. The EFPF plat-
form enables users to utilize innovative function-
alities, experiment with disruptive approaches, and
develop custom solutions to maximize connectivity,
interoperability, and efficiency across the supply
chains.

An illustration of EFPF is provided in Figure 1, which
shows the EFPF Data Spine component as the
central entity. The Data Spine interconnects ex-
ternal platforms, as well as four different industrial
platforms, which have been derived from four prior
projects, including COMPOSITION6, DIGICOR7,
NIMBLE8, and vf-OS9.

The EFPF ecosystem integrates smart tools provid-
ed by different partners. These tools and services
aim to cover the complete lifecycle of production
and logistic processes that occur in a modern in-
dustrial environment. Examples of the tools include

the following: data gateways, distributed produc-
tion planning and scheduling, distributed process
design, monitoring, decision support, process opti-
mization, risk management, and blockchain-based
trust and message exchange.

Data Spine, which is a component that intercon-
nects the different applications provided by various
platforms, is the core of EFPF. Data Spine offers in-
teroperable services at the level of protocols, mes-
sage formats, data structures, data models, software
services, and processes ranging from field-level
control to business process enactment. The inter-
operable security features, which ensure transpar-
ent utilization of tools and services at the EFPF plat-
form level, encompass the Data Spine.

The interoperable data exchange in EFPF is based
on the development of connectors to key industrial
protocols. For asynchronous communication, EFPF
relies on MQTT and the Advanced Message Queu-
ing Protocol (AMQP)10.

Base Platforms

Tool x1

Business & Network
Intelligence

Data Analytics

Smart Contracting

Workflow & Business
Proscess

Secure Data Storage

... Other Smart Factory
Tools/Services

Platform X
Factory 1 Factory 2

Platform Y

EFPF Portal

Data SpineService x2

3rd Party Tools/Services
(SaaS – Cloud-native)

3rd Party Platforms

Ecosystem
Enablers

EFPF
Platform

Factories

Tool y1 Binary File

Service y2 Source Code
Repository

3rd Party Tools/Services
(SaaP – Downloadable)

3rd Party Data Providers

Tool z1

Dataset z2
(Downloadable)

Factory Connector 1

API Security Gateway

Message Bus

Integration Flow Engine

EFPF Security Portal (EFS)

Service Registry

IoT Gateway 1

Integrated
Marketplace

Pub/Sub
Security Service

Matchmaking &
Federated Search

7

6 https://www.composition-project.eu/
7 https://www.digicor-project.eu/
8 https://www.nimble-project.org/
9 https://www.vf-os.eu/
10 https://amqp.org
11 A full perspective on all components is available via the EFPF User Guide 101, https://docs.efpf.linksmart.eu/projects/user-guide-101/
12 https://docs.efpf.linksmart.eu/projects/user-guide-101/list-of-services

The key components of EFPF11 are as follows.

∞ Integrated marketplace.
This component is the place where all services
can be found.

∞ Matchmaking.
The matchmaking service helps EFPF users find
the best-suited suppliers from across different
platforms and enables their efficient and effective
transactions.

∞ Message Bus.
This subcomponent of the Data Spine integrates
the PubSub support via the integration of MQTT
and AMQP.

∞ Integration Flow Engine.
This subcomponent of the Data Spine integrates
the tools to transform message contents and
data models of different services connected to
the Data Spine. Therefore, this subcomponent
supports data interoperability aspects.

∞ Security Interoperability.
The EFPF security portal component of the Data
Spine provides a federated security layer and sin-
gle sign-on capabilities to the ecosystem.

∞ Data Spine.
This component corresponds to the core of
EFPF, providing interconnection and interopera-
bility. The Data Spine integrates services, such as
single sign-on, service registration and discovery,
message brokering, and dataflow management
and service composition. As the interoperability
backbone of the EFPF platform, one of the Data
Spine focuses is to bridge the interoperability
holes at three different levels between the tools
that it interconnects. The Data Spine supports
synchronous request–response and asynchro-
nous publish/subscribe (PubSub) communication
patterns.

∞ Factory connectors/IoT gateways.
These components correspond to communica-
tion connectors (e.g., MQTT Sparkplug connec-
tor) and to middleware, which provides some
form of data processing (e.g., matchmaking be-
tween IoT data sources and services).

∞ EFPF platform.
This component provides a list of services that
can be used by external partners12, such as data
analytics and predictive maintenance.

∞ External platforms.
These components comprise the base and exter-
nal partner platforms.

8

MQTT is an IP-based message-oriented protocol
that relies on the notion of a mediating entity, a
data broker, to support asynchronous commu-
nication between data sources (Publishers) and
Consumers of the data. Therefore, MQTT provides
a lightweight PubSub approach for IoT communi-
cations based on TCP. MQTT also introduces the
advantage of supporting specific QoS levels. There-
fore, the broker is a central (single point of failure)
entity that manages the data delivery across the
entire IoT infrastructure.

Within industrial environments, MQTT introduces
the advantage of having the producers of data (ro-
bots, sensors) publish their data to a broker either
based on periodic polling or when changes are de-
tected. The consumers can be specific services, IoT
platforms, software, or users. The consumers also
register to specific topics on the broker and there-
fore asynchronous receive the published data, inde-
pendently of the whereabouts of the producers.

Publishers and Consumers are aware of the bro-
ker’s whereabouts (IP/Port, URL); however, Publish-
ers and subscribers have no additional information
(asynchronous communication pattern).

The data exchange is supported by topic paths (e.g.,
RoomA/Temperature (temperature in room A)). The
consumer subscribes to a specific topic to obtain
specific data. Therefore, a consumer could be an
application monitoring data on a building; it would
obtain the temperature from room A, subscribing to
this topic.

The broker stores specific filters within the con-
sumer session. It also establishes data routes that
match updates from publishers to all consumers
that are subscribed to a specific topic. MQTT allows
for point-to-point and 1-to-many data exchange
patterns. Therefore, MQTT can support interest-
and event-driven communication within industrial
environments. However, the communication is not
bidirectional.

The key advantages of MQTT in the context of in-
dustrial environments can be summarized as
follows [11].

∞ Lightweight, asynchronous communication.
MQTT is data-driven and has a substantially small
packet header, thus allowing data exchange
across embedded devices with a remarkably
small footprint.

∞ QoS and fault tolerance. MQTT integrates three
QoS levels (0, 1, and 2) to ensure the reliability
of message delivery. Data persistency (the regis-
tered data can be obtained even if a consumer
disconnects and reconnects).

∞ Reduced bandwidth uses in comparison to re-
quest–response protocols, such as CoAP, claim-
ing 80% improvement.

A. MQTT Sparkplug

A missing aspect in MQTT is a uniform namespace
that can be applied in the context of manufacturing
environments, considering the need to integrate
brownfield devices into end-to-end, sophisticated
IoT systems. Therefore, adapting the namespace
to the specific use case is necessary for MQTT
(which implies not only a description of the specif-
ic machines). It also relates to providing details on
the data routes and topics that can be subscribed
(how to handle the payload, how QoS levels are
mapped).

These aspects are currently supported by Sparkplug
B, which specifically addresses the particularity of
industrial domains [11]. Therefore, the current spec-
ification of Sparkplug defines two specific node
entities:

∞ Edge of Network nodes (EoN). These nodes cor-
respond to gateways that support the intercon-
nection of legacy devices. EoN also comprises
smart devices and sensors that already published
Sparkplug B data or metrics to a broker.

∞ Application nodes. These nodes correspond to
software-based clients (consumers) or a legacy
gateway.

In the context of the MQTT Sparkplug specification,
all MQTT clients and brokers should be compliant
with the latest MQTT V3.1.1 specification.

MQTT Sparkplug in a NutShell

9

2) Sparkplug B MQTT Payload

As one of the key strengths in industrial environ-
ments, Sparkplug B defines a specific structured
and flexible payload format. The payload is based
on key-value pairs and associated meta-data. Addi-
tional optional fields can be included (e.g., name,
description). The payload can also integrate specific
arrays with custom properties (e.g., units, published
along with a process or a data object). The payload
is encoded via Protobufs, thus providing an efficient
binary representation, which becomes highly effec-
tive in industrial environments.

3) State Management

Sparkplug follows on the MQTT “last will” and
“testament” messages to support data permanence,
thus relying on “birth and death” certificate messag-
es. These messages are used upon expiration of a
consumer keepalive timer. A new aspect introduced
in Sparkplug is the birth certificate, a message that
a consumer can utilize to publish data for itself and
each of its devices. This approach provides a natural
method for data and topic discovery.

1) Sparkplug™ MQTT Topic Namespace

MQTT Sparkplug nodes rely on the Sparkplug
MQTT Topic Namespace structure illustrated in
Figure 2 and hold the following fields.

∞ Namespace refers to the Sparkplug version used.
Therefore, it defines the remaining elements of
the namespace as well as the payload. Two op-
tions are possible: either (i) “spAv1.0” referring to
Sparkplug™ payload definition A or (ii) “spBv1.0”
referring to the Sparkplug™ payload definition B.

∞ Group ID (group_id) is a logical identifier for a
group of MQTT nodes, as defined by the user.

∞ Message Type (message_type) indicates how the
payload is handled. The payload may contain the
following aspects: polled data or a specific com-
mand; whether it belongs to a node or device;
primary application.

∞ Edge Node ID (edge_node_id) identifies a spe-
cific MQTT EoN. The Group ID/Edge Node must
be unique.

∞ Device ID (device_id) is an optional element that
identifies the (logical or physical) device attached
to the EoN.

Figure 2: Sparkplug Topic Namespace structure.

namespace /group_id/message_type/edge_node_id/[device-id]

Reference ID to a logical
grouping of nodes

Either „spAv1.0“
or „spBv1.0“

ID of the edge
node device

Defines how the
message is processed

Unique
device ID

10

The EFPF platform uses the MQTT Sparkplug to
structure its topic namespace and provide some
semantics to the MQTT topics. This condition is
especially important in a federated platform where
data are exchanged across platforms, thus utilizing
a standard (such as MQTT Sparkplug) to effectively
understand the type of data using the topic name-
space and therefore improves interoperability.

In the context of EFPF, data are exchanged between
shop floor and services from different platforms
using EFPF IoT gateways and factory connectors,
as illustrated in Figure 3. In this scenario, the shop
floor data are published by the EFPF IoT gateways
and factory connectors to the EFPF Message Bus,
wherein the edge_node_id is the unique ID of the
EFPF IoT gateway or factory connector, the mes-
sage_type defines the type of message to be pro-
cessed (e.g., “NDATA” (Node data message)),” the
group_id refers to the logical grouping of nodes
(e.g., plant1), and the namespace is “spBv1.0” becau-
se EFPF use Sparkplug payload definition B. For a
third-party service to consume the shop floor data
in the required specific data model, a developer
consumes the data via the data flow management,
and service composition transforms these data to
the required model and republishes them to the
Message Bus. The topic namespace must be diffe-
rent in this step. However, understanding the origin
of the data and its transformation is necessary.

Data exchange can be achieved in various ways.
One approach is to adjust the edge_node_id to
reflect the node where the data originates, namely
data flow management and service composition.
This approach carries two challenges: ensuring the
uniqueness of the ID and losing the information
regarding the specific EFPF IoT gateway or EFPF
factory connector, which is initially published to the
Data Spine.

 Another approach would be to add a new mes-
sage_type; however, such an approach would im-
ply changes to the current specification.

The final approach, which is adopted by EFPF, is
to adjust the group_id (for instance, by changing it
from “plant1” to “plant1_transformed”).

MQTT Sparkplug in EFPF

MQTT is also used in some EFPF scenarios to facili-
tate data exchange between services from different
platforms, as illustrated in Figure 4. Such scenarios
relate to exchanging industrial time series data (e.g.,
between a predictive maintenance service and a
visualization or a data storage service). Therefore,
reconsidering the use of a topic namespace in such
scenarios is necessary.

The approach adopted by EFPF based on an exam-
ple of a predictive maintenance application is pre-
sented as follows.

∞ If required, then use device_id to refer to a speci-
fic device (for instance, the id of the machine).

∞ Apply edge_node_id as the unique ID of a ser-
vice instance that publishes data.

∞ Apply message_type to the type of message to
be processed (e.g., “NDATA”).

∞ Apply group_id to refer to the type of published
data. For a specific example, the group_id could
be set to “predictive_maintenance” if the publis-
hed data relate to predictive parameters or could
be set to “Welding_quality” if the data provide
welding quality parameters of a specific machine.

∞ If data transformation occurs (if the data are
transformed using the EFPF data flow manage-
ment and service composition), then group_id is
adjusted to reflect the transformation (for exam-
ple, from “predictive_maintenance” to “predicti-
ve_maintenance_transformed”).

11

5

Figure 4: Data exchange between services across platforms.

Figure 3: Data exchange between shop floor and services.

3rd Party Tools/Services 3rd Party Platform

Ecosystem Enablers

EFPF IoT gateways and factory connetors

Data Spine

Publisher: Topic2_transformed

Consumer: Topic2_transformed

Consumer:
Topic2

Servicex ServiceY

Message Bus Integration Flow Engine

3rd Party Tools/Services

Ecosystem Enablers

Data Spine

Publisher: Topic1_transformed

Consumer:
Topic1

Servicex

Message Bus Integration Flow Engine

Publisher: Topic1

Consumer:Topic1_transformed

Publisher: Topic2

12

This Section describes the application of MQTT
Sparkplug into two different services provided in the
EFPF platform: a data analytics tool and the use of
MQTT Sparkplug to support data exchange across a
shop floor by third parties.

A. Data Analytics Tooling Interconnection

MQTT Sparkplug has been used to allow third-par-
ties, such as a systems integrator, to provide an
interconnection between a shop-floor and the dif-
ferent EFPF data analytics tools13.

The EFPF data analytics tools can be used to gener-
ate insights regarding the shop floor processes.
The implemented data flow scheme is illustrated in
Error! Reference source not found.. The data
source in this example is an EFPF base component,
namely a factory connector, which is connected to
multiple sensors attached to an edge banding ma-
chine on the shop floor.

This use case has some challenges derived from
the integration across an IIoT system. One chal-
lenge is the capability to push the data from a single
Publisher (in this case, the factory connector) to dif-
ferent tools, which will perform various operations
using the EFPF platform. Another challenge, created
by the necessity to use different tools, is that each
tool often has different requirements on the data
model for the input data. Some tools may require
the use of proprietary data models, while others will
be based on standard data models. Other tools will
still require some scaling operations on the input
data for processing (e.g., converting temperature
values from the Fahrenheit to the Celsius scale).

The EFPF platform contains all the resources re-
quired to enable the workflow illustrated in Error!
Reference source not found..

∞ The MQTT/AMQP broker integrated into the
Message Bus component allows the intercon-
nection of different components of the workflow
asynchronously.

∞ The PubSub Security Service provides the user
interface for creating the secured private MQTT/
AMQP topics, on which the tools can exchange
the data.

EFPF MQTT Sparkplug Examples

∞ The Integration Flow Engine component inclu-
des some useful integrated processors to inter-
connect the tools and to perform the required
transformation operations on the exchanged
data.

The first step for connecting a factory connector
to the Data Spine is its registration as a resource on
the PubSub Security Service. The topic on which it
will publish the data can be created after its registra-
tion. Additional topics for a single resource can be
registered when necessary. The resources and the
topics are thus private to the company that created
them; however, for privacy reasons, both can be
shared only with users of the platform on demand.
This step has been implemented using virtual hosts,
and each registered company on the platform has
its virtual host created on the Message Bus. One
disadvantage of this implementation choice is the
mitigated risk of creating equal topics by different
users because different companies could register
the same topic on various virtual hosts without data
collision.

The factory connector can start to send data on the
Message Bus continuously using the MQTT proto-
col once it is connected to the EFPF Message Bus
on the Data Spine. Regarding the topic namespace,
the following aspects in this example scenario have
been integrated:

∞ Edge node ID (edge_node_id) has been defined
as “IW2001_LAG.”

∞ Message type (message_type) has been set as
“NDATA.”

∞ Group ID (group_id) has been set as “EDGE_BAN-
DING_CONDITION” based on the assumption of
the interconnection between the factory connec-
tor collecting sensor readings of the edge ban-
ding and the EFPF Ni-Fi integration flow engine.

Data must be transformed before their use by the
EFPF data analytics tools once they reach the Data
Spine. Therefore, multiple processors are used in-
side and outside the integration flow engine of EFPF
(EFPF Ni-Fi)14. These transformations are necessary
because different data analytics tools may rely on
various data models.

13

Figure 5: Data flow diagram.

Figure 5 illustrates two different data integration
flows. From steps 2 to 5, data are collected from the
Message Bus to facilitate scaling to standard units of
measurement using a JOLT transformation proces-
sor and then published again for consumption by a
data analytics tool.

The second integration flow covers steps 6 to 11,
wherein data model transformation operation on
the obtained data from the factory connector is per-
formed by pushing data to an external data model
translation microservice. This microservice processes
the data and sends them back to the EFPF Data Spi-
ne, where they are pushed back to the Message Bus,
thus readily becoming available for consumption by
another tool.

 The following aspects have been integrated to in-
corporate the described changes to the data perfor-
med on the integration flow engine.

∞ group_id is changed to “EDGE_BANDING_CON-
DITION_SCALED” for the topic used between the

13 https://www.efpf.org/data-analytics
14 https://docs.efpf.linksmart.eu/projects/data-spine-nifi/

EFPF Ni-Fi integration flow engine and the data
analytics tools, which can consume data encoded
with the original data model. However, scaling
operations must be performed on the data values.

∞ group_id is changed to “EDGE_BANDING_CON-
DITION_SCALED_TRANSFORMED” for the topic
used between the EFPF Ni-Fi integration flow en-
gine and the data analytics tool, which must con-
sume data encoded with a different data model
and requires scaling operations on the data values.

Each of the aforementioned publishing operations
always requires registration of the resource, that is,
publishing the data and the topic on which the data
are published, as previously described. Keeping track
of a complex workflow, such as the generic one de-
scribed above, is easy for system integrators by using
the proposed extension of the Sparkplug MQTT
namespace. As described earlier, monitoring the
transformations performed on the data and the data
exchange on the topic is possible only by examining
the available topic list on the PubSub Security Service.

Data Model Translation Microservice

Integration Flow Engine

Integration Flow Engine

Factory
Connector

Analytics
Tool

Message Bus

MQTT Subscribe

JOLT Transform

MQTT Publish

MQTT Subscribe MQTT Publish

HTTP POST

12

11

107

8 9

6

5

43

2

1

14

B. Environment Monitoring Pilot

On a second pilot, MQTT Sparkplug has been
used to support an IIoT monitoring use case; that
is, monitoring environmental aspects on the shop
floor, temperature, and humidity. The EFPF pilot
involved two SMEs: Walter Otto Müller GmbH &
Co.KG15 and Innovint Aircraft Interior GmbH16.

Figure 6 illustrates the data workflow in this pilot,
focusing on the integration of MQTT Sparkplug to
facilitate data exchange between two components
of the EFPF platform: the Thing to Service Matching
(TSMatch)17 and the IoT Symphony platform18.

TSMatch provides support for semantic matchmak-
ing between sensor and machine descriptions and
services [12]. The IoT Symphony platform is a com-
plete BMS platform whose basic building blocks
can be used to support the automation of different
production sites.

Two topics were used to support the intercon-
nection between TSMatch and the IoT Symphony
platform. The first topic was used to send sensor
observations from the TSMatch engine (server-side)
to the EFPF Integration Flow Engine, wherein the
data are transformed to the data model required by
the IoT Symphony platform using JOLT transforma-
tion. The second topic was used to share the trans-
formed sensor observations with the Symphony
platform. A service registry is utilized to register the
service descriptions using AsynAPI 2.0 specs to ease
integration.

EFPF MQTT Sparkplug Examples

15 https://www.wom.gmbh/}
16 https://www.innovint.de/}.
17 https://docs.efpf.linksmart.eu/projects/factory-connectivity-smart-factory-tools/ds-tsmatch-gateway/
18 https://docs.efpf.linksmart.eu/projects/factory-connectivity-smart-factory-tools/ds-symphony-platform/

The following aspects considering the topic name-
space have been integrated:

∞ edge_node_id has been defined as “TSMatch_
WOM_1”;

∞ message_type has been set as “NDATA”;

∞ group_id has been set as “WOM_OBSERVATION,”
assuming the interconnection between TSMatch
and the EFPF Ni-Fi Integration Flow Engine;

∞ group_id is changed to “WOM_OBSERVATION_
TRANSFORMED” for the topic used between the
EFPF Ni-Fi Integration Flow Engine and the Sym-
phony platform.

Easily integrating different data sources (sensors)
is feasible with the proposed data workflow and
MQTT Sparkplug namespace configuration, thus
allowing for simplified data processing on the shop
floor.

15

Figure 6: Data flow diagram of the environment monitoring pilot scenario.

EFPF Portal

Sensors
(Temperature, Humidity)

Symphony

Platform GUI

TSMatch
(IoT Gateway)

Data Model: HAL DM

Service Registry

Registrations of async services with

the following operations and topics

specified in AsynAPI specs:

publish & subscribe:
spBv1.0/WOM_OBSERVATION_

TRANSFORMED/NDATA/TSMATCH_

WOM_1

publish & subscribe:
spBv1.0/WOM_OBERSERVATION/

NDATA/TSMATCH_WOM_1

Publish

TSM DM

HAL DM

Subscribe

Integration Flow Engine (DS NiFi)

JO
LT

 t
ra

n
sf

o
rm

at
io

n

In
te

g
ra

ti
o

n
 F

lo
w

Message
Broker

(DS RabbitMQ)

Data Spine

iFrame Operation: subscribe Topic:
spBv1.0/WOM_OBSERVATION_
TRANSFORMED/NDATA/TSMATCH_
WOM_1

Operation: publish Topic:
spBv1.0/WOM_OBSERVATI-

ON_TRANSFORMED/NDATA/

TSMATCH_WOM_1

Operation: subscribe
Topic: spBv1.0/WOM_OBSER-

VATION/NDATA/TSMATCH_

WOM_1

Operation: publish Topic:
spBv1.0/WOM_OBSERVATION/NDATA/
TSMATCH_WOM_1

WOM factory premises Data Model: TSM DM

16

This white paper provides an overview of the appli-
cation of MQTT Sparkplug in the context of differ-
ent EFPF pilots to assist in reducing data workflow
complexity and improve interoperability.

A key challenge detected during the development
of the EFPF platform relates to the different data
models applied in manufacturing. Another key
challenge is the need to simplify the overall data
process on the shop floor, minimizing the need for
advanced expertise in IIoT and assisting manufac-
turers in a broad integration of services.

The EFPF PubSub security service, which is based
on DS RabittMQ, facilitates the interconnection of
current and future data processing services in EFPF
via the creation of topics, on which EFPF services
(e.g., Factory Connector and data analytics Tool)
publish data. The use of MQTT Sparkplug in this
context enables the interconnection of different
EFPF services by providing third parties within a
common interface.

Advantages derived from the adoption of the MQTT
Sparkplug namespace lie in the possible implemen-
tation of advanced topic searching functions on the
platform user interface, such as grouping by edge
node or searching for all the transformations ap-
plied to a particular data source.

The work detailed in this white paper has been
supported by the H2020 EFPF project (2018−2022),
grant agreement number 825075.

Summary and Lessons Learned

Acknowledgements

17

[1] S. H. Leitner and W. Mahnke, “OPC-UA Service-oriented architecture for industrial applications,” 2006.

[2] S. Raff, “The MQTT community.” [Online]. Available: https://github.com/mqtt/mqtt.github.io/wiki.
[Accessed: 10-Jun-2018].

[3] M. S. Rocha, G. S. Sestito, A. L. Dias, A. C. Turcato, D. Brandão, and P. Ferrari, “On the performance of
OPC UA and MQTT for data exchange between industrial plants and cloud servers,” ACTA IMEKO,
vol. 8, no. 2, pp. 80–87, 2019.

[4] D. Silva, L. I. Carvalho, J. Soares, and R. C. Sofia, “A Performance analysis of internet of things network-
ing protocols: Evaluating MQTT, CoAP, OPC UA,” Applied Sciences, vol. 11, no. 11, p. 4879, 2021.

[5] R. C. Sofia and J. Soldatos, “A vision on smart, decentralised edge computing research directions,”
NGIoT White Pap., no. September, 2021.

[6] S. R. J. Ramson, S. Vishnu, and M. Shanmugam, “Applications of internet of things (iot)--An overview,”
in 2020 5th international conference on devices, Circuits and Systems (ICDCS), pp. 92–95, 2020.

[7] R. C. Sofia, M. Kovatsch, and P. Mendes, “Requirements for reliable wireless industrial services,” Inter-
net Engineering Task Force, December. 2021.

[8] N. Naik, “Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP and HTTP,” in
2017 IEEE International Systems Engineering Symposium (ISSE), pp. 1–7, 2017.

[9] I. V. Nițulescu and A. Korodi, “Supervisory control and data acquisition approach in node-RED: Applica-
tion and discussions,” IoT, vol. 1, no. 1, pp. 76–91, 2020.

[10] A. Nipper, “How to build scalable data models with MQTT Sparkplug: A key to bridging the OT/IT gap
is enabling successful data modeling, which is how organizations define and organize their business
processes.,” Plant Engineering, vol. 75, no. 4, pp. 21–23, 2021.

[11] Opto, “Industrial strength MQTT/Sparkplug B, building industrial MQTT networks at scale with edge
computing,” Opto vol. 22, p. 22, 2021.

[12] N. Bnouhanna, E. Karabulut, R. C. Sofia, E. E. Seder, G. Scivoletto, and G. Insolvibile, “An evaluation of
a semantic thing to service matching approach in industrial IoT environments,” inProc IEEE Percom
IoT-Producao 2022 Workshop, 2022.

References

18

Publisher
fortiss GmbH
Guerickestraße 25
80805 München

Editing
enago, München

Layout
fortiss Marketing

Print
viaprinto GmbH & Co. KG

ISSN Print
2699-1217

ISSN Online
2700-2977

1st issue:
December 2022

Photo credits:
Title: AdobeStock 248781604
Page 18: Fortiss GmbH @ Kathrin Kahle

Imprint

Find here more
fortiss White Paper

19

fortiss is the Free State of Bavaria research institute
for software-intensive systems based in Munich.
The institute collaborates on research, development
and transfer projects together with universities and
technology companies in Bavaria and other parts
of Germany, as well as across Europe. The research
activities focus on state-of-the-art methods, tech-
niques and tools used in Software & Systems-,
AI- and IoT-Engineering and their application with
cognitive cyber-physical systems.

fortiss is legally structured as a non-profit limited
liability company (GmbH). The shareholders are
the Free State of Bavaria (majority shareholder) and
the Fraunhofer-Gesellschaft zur Förderung der
angewandten Forschung e.V.

Although this white paper was prepared with the
utmost care and diligence, inaccuracies cannot be
excluded. No guarantee is provided, and no legal
responsibility or liability is assumed for any damages
resulting from erroneous information.

20

fortiss GmbH
Guerickestraße 25
80805 München
Deutschland
www.fortiss.org
Tel: +49 89 3603522 0
E-Mail: info@fortiss.org

